Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Lung Cancer Res ; 12(12): 2494-2504, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38205216

RESUMO

Background: The prediction of the persistent pure ground-glass nodule (pGGN) growth is challenging and limited by subjective assessment and variation across radiologists. A chest computed tomography (CT) image-based deep learning classification model (DLCM) may provide a more accurate growth prediction. Methods: This retrospective study enrolled consecutive patients with pGGNs from January 2010 to December 2020 from two independent medical institutions. Four DLCM algorithms were built to predict the growth of pGGNs, which were extracted from the nodule areas of chest CT images annotated by two radiologists. All nodules were assigned to either the study, the inner validation, or the external validation cohort. Accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curves, and areas under the ROC curve (AUROCs) were analyzed to evaluate our models. Results: A total of 286 patients were included, with 419 pGGN. In total, 197 (68.9%) of the patients were female and the average age was 59.5±12.0 years. The number of pGGN assigned to the study, the inner validation, and the external validation cohort were 193, 130, and 96, respectively. The follow-up time of stable pGGNs for the primary and external validation cohorts were 3.66 (range, 2.01-10.08) and 4.63 (range, 2.00-9.91) years, respectively. Growth of the pGGN occurred in 166 nodules [83 (43%), 39 (30%), and 44 (45%) in the study, inner and external validation cohorts respectively]. The best-performing DLCM algorithm was DenseNet_DR, which achieved AUROCs of 0.79 [95% confidence interval (CI): 0.70, 0.86] in predicting pGGN growth in the inner validation cohort and 0.70 (95% CI: 0.60, 0.79) in the external validation cohort. Conclusions: DLCM algorithms that use chest CT images can help predict the growth of pGGNs.

2.
BMC Cancer ; 21(1): 1124, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666705

RESUMO

BACKGROUND: Different pathological subtypes of invasive pulmonary adenocarcinoma (IPA) have different surgical methods and heterogeneous prognosis. It is essential to clarify IPA subtypes before operation and high-resolution computed tomography (HRCT) plays a very important role in this regard. We aimed to investigate the HRCT features of lepidic-predominant type and other pathological subtypes of early-stage (T1N0M0) IPA appearing as a ground-glass nodule (GGN). METHODS: We performed a retrospective analysis on clinical data and HRCT features of 630 lesions in 589 patients with pathologically confirmed IPA (invasive foci > 5 mm) appearing as pure GGN (pGGN) and mixed GGN (mGGN) with consolidation-to-tumor ratio (CTR) ≤0.5 from January to December 2019. All GGNs were classified as lepidic-predominant adenocarcinoma (LPA) and nonlepidic-predominant adenocarcinoma (n-LPA) groups. Univariate analysis was performed to analyze the differences of clinical data and HRCT features between the LPA and n-LPA groups. Multivariate analysis was conducted to determine the variables to distinguish the LPA from n-LPA group independently. The diagnostic performance of different parameters was compared using receiver operating characteristic curves. RESULTS: In total, 367 GGNs in the LPA group and 263 GGNs in the n-LPA group were identified. In the univariate analysis, the CTR, mean CT values, and mean diameters as well as mixed GGN, deep lobulation, spiculation, vascular change, bronchial change, and tumor-lung interface were smaller in the LPA group than in the n-LPA group (P <  0.05). Logistic regression model was reconstructed including the mean CT value, CTR, deep lobulation, spiculation, vascular change, and bronchial change (P <  0.05). Area under the curve of the logistic regression model for differentiating LPA and n-LPA was 0.840 (76.4% sensitivity, 78.7% specificity), which was significantly higher than that of the mean CT value or CTR. CONCLUSIONS: Deep lobulation, spiculation, vascular change, and bronchial change, CT value > - 472.5 HU and CTR > 27.4% may indicate nonlepidic predominant invasive pulmonary adenocarcinoma in GGNs.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada Espiral/métodos , Adenocarcinoma de Pulmão/patologia , Adulto , Idoso , Análise de Variância , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Curva ROC , Estudos Retrospectivos , Adulto Jovem
3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 42(4): 477-484, 2020 Aug 30.
Artigo em Chinês | MEDLINE | ID: mdl-32895099

RESUMO

Objective To make a preliminary pathological classification of lung adenocarcinoma with pure ground glass nodules(pGGN)on CT by using a deep learning model. Methods CT images and pathological data of 219 patients(240 lesions in total)with pGGN on CT and pathologically confirmed adenocarcinoma were collected.According to pathological subtypes,the lesions were divided into non-invasive lung adenocarcinoma group(which included atypical adenomatous hyperplasia and adenocarcinoma in situ and micro-invasive adenocarcinoma)and invasive lung adenocarcinoma group.First,the lesions were outlined and labeled by two young radiologists,and then the labeled data were randomly divided into two datasets:the training set(80%)and the test set(20%).The prediction Results of deep learning were compared with those of two experienced radiologists by using the test dataset. Results The deep learning model achieved high performance in predicting the pathological types(non-invasive and invasive)of pGGN lung adenocarcinoma.The accuracy rate in pGGN diagnosis was 0.8330(95% CI=0.7016-0.9157)for of deep learning model,0.5000(95% CI=0.3639-0.6361)for expert 1,0.5625(95% CI=0.4227-0.6931)for expert 2,and 0.5417(95% CI=0.4029-0.6743)for both two experts.Thus,the accuracy of the deep learning model was significantly higher than those of the experienced radiologists(P=0.002).The intra-observer agreements were good(Kappa values:0.939 and 0.799,respectively).The inter-observer agreement was general(Kappa value:0.667)(P=0.000). Conclusion The deep learning model showed better performance in predicting the pathological types of pGGN lung adenocarcinoma compared with experienced radiologists.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Aprendizado Profundo , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...